### Auditorium Exercise 01

## Differential Equations II for Students of Engineering Sciences Summer Semester 2024

Jule Helena Schütt

Universität Hamburg

April 12 2023



#### Overview

General Information

Important Tools
Fourier Analysis
Eigenvalue Strategies
Differential Operators

### General Information for Differential Equations II\*

- ► Lecturer: Professor Thomas Schmidt
- Lectures: Mo, 13:15-14:45, A-0.13
- ► Tutor (English): Jule Schütt
- e-mail: jule.schuett@uni-hamburg.de
- office hour: Mo 10:00-11:00, E4.012
- ▶ Auditorium Exercise class: Fr 11:30-13:00, A-1.15
- Exercise groups: Mo 11:30–13:00, A-1.20
- ► More information and material: math.uni-hamburg.de/teaching

<sup>\*</sup>Everything bi-weekly except lectures

#### Idea

Having a T-periodic function f (like sin or cos for  $T=2\pi$ ), then we hope to represent f as uniform convergent series with summands we know well (sin and cos)

#### Idea

Having a T-periodic function f (like sin or cos for  $T=2\pi$ ), then we hope to represent f as uniform convergent series with summands we know well (sin and cos)

(Hopefully) known tools we need:

- ► Vector space V
- ▶ Scalar product  $\langle \cdot, \cdot \rangle$
- lacksquare Orthonormal basis  $b_1, b_2, \ldots \ (\langle b_i, b_j \rangle = \delta_{i,j})$

▶ Here: V is the vector space of all continuous T-periodic functions

- ▶ Here: V is the vector space of all continuous T-periodic functions
- Scalar product:

$$\langle f,g\rangle := \frac{2}{T} \int_0^T f(t)g(t)dt$$
.

- ▶ Here: V is the vector space of all continuous T-periodic functions
- Scalar product:

$$\langle f,g\rangle := \frac{2}{T} \int_0^T f(t)g(t)dt$$
.

Orthonormal basis:

$$u_0(t) := \frac{1}{\sqrt{2}}, \ u_k(x) := \cos(k\omega t), \ v_k(t) := \sin(k\omega t),$$

with 
$$k \in \mathbb{N}$$
,  $\omega = \frac{2\pi}{T}$ .

Indeed, by integration by parts and trigonomic identifications,

$$\frac{2}{T} \int_0^T \sin(k\omega t) \cdot \sin(l\omega t) dt = \begin{cases} 0 & \text{falls } k \neq I, \\ 1 & \text{falls } k = I. \end{cases} \quad \forall k, I \in \mathbb{N}$$

$$\frac{2}{T} \int_0^T \cos(k\omega t) \cdot \cos(l\omega t) dt = \begin{cases} 0 & \text{falls } k \neq l, \\ 1 & \text{falls } k = l. \end{cases} \quad \forall k, l \in \mathbb{N}$$

$$rac{2}{T}\int_0^T \cos(k\omega t)\cdot\sin(l\omega t))dt=0$$
  $\forall k,l\in\mathbb{N},$ 

$$rac{2}{T}\int_0^Trac{1}{\sqrt{2}}\cos(k\omega t)dt=rac{2}{T}\int_0^Trac{1}{\sqrt{2}}\sin(k\omega t)dt=0 \qquad orall k\in\mathbb{N}\,,$$

$$\frac{2}{T} \int_{0}^{T} \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} dt = 1.$$

For instance,

$$2\sin(\alpha t)\sin(\beta t) = \cos((\alpha - \beta)t) - \cos((\alpha + \beta)t).$$

For instance,

$$2\sin(\alpha t)\sin(\beta t) = \cos((\alpha - \beta)t) - \cos((\alpha + \beta)t).$$

So, if 
$$k, l \in \mathbb{N}$$
,  $k \neq l$ 

$$\int_{0}^{T} 2\sin(k\omega t) \cdot \sin(l\omega t) dt$$

$$= \int_{0}^{T} \cos((k\omega - l\omega)t) - \cos((k\omega + l\omega)t) dt$$

$$= \left[\frac{\sin((k\omega - l\omega)t)}{\omega(k-l)} - \frac{\sin((k\omega + l\omega)t)}{\omega(k+l)}\right]_{0}^{T}$$

$$= \frac{\sin((k-l)\omega T)}{\omega(k-l)} - \frac{\sin((k+l)\omega T)}{\omega(k+l)}$$

$$= \frac{\sin((k-l)2\pi)}{\omega(k-l)} + \frac{-\sin((k+l)2\pi)}{\omega(k+l)} = 0$$

For instance,

$$2\sin(\alpha t)\sin(\beta t) = \cos((\alpha - \beta)t) - \cos((\alpha + \beta)t).$$

and if k = I

$$\int_{0}^{T} 2\sin(k\omega t) \cdot \sin(k\omega t) dt$$

$$= \int_{0}^{T} \cos((k\omega - k\omega)t) - \cos((k\omega + k\omega)t) dt$$

$$= \int_{0}^{T} 1 dt - \left[\frac{\sin((2k\omega t))}{2k}\right]_{0}^{T}$$

$$= T - \frac{\sin(4k\pi)}{2k} = T.$$

#### Definition

Let  $f : \mathbb{R} \to \mathbb{C}$  be piecewise differentiable and T-periodic, then the **Fourier Series** of f is defined as

$$F_f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(k\omega t) + b_k \sin(k\omega t) \qquad \omega = \frac{2\pi}{T},$$

where we call<sup>†</sup>

$$a_k = \frac{2}{T} \int_0^T f(t) \cos(k\omega t) dt \stackrel{\text{if } k \in \mathbb{N}}{=} \langle f, u_k \rangle \qquad k \in \mathbb{N}_0$$
$$b_k = \langle f, v_k \rangle = \frac{2}{T} \int_0^T f(t) \sin(k\omega t) dt \qquad k \in \mathbb{N}$$

#### the **Fourier coefficients** of f.

<sup>&</sup>lt;sup>†</sup>The last equality is only valid for  $k \neq 0$  since  $a_0/2 = \sqrt{2} \langle f, u_0 \rangle$  i.e., we inserted the constant function 1 instead of  $1/\sqrt{2}$  in the inner product on the right hand side. One can actually also define  $a_0 = \langle f, u_0 \rangle$  but then take  $a/\sqrt{2}$  instead of  $a_0/2$  in the definition of  $F_f(t)$ .

#### Convergence

In general ,the series converges to  $\frac{1}{2}(f_-(t)+f_+(t))$  which we denote by  $F_f(t)\sim f(t)$ .

Hence, if f is continuous at t, then  $F_f(t) = f(t)$ .

## Fourier Analysis: Simplification due to Geometry

If f is **even** (f(-t) = f(t)) then

$$b_k = \frac{2}{T} \int_0^T \underbrace{f(t)\sin(k\omega t)}_{\text{odd}} dt = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t)\sin(k\omega t) dt = 0$$

and

$$a_k = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \underbrace{f(t)\cos(k\omega t)}_{\text{even}} dt = \frac{4}{T} \int_{0}^{T/2} f(t)\cos(k\omega t) dt$$

If f is **odd** (f(-t) = -f(t)) then

$$a_k = 0$$
 und  $b_k = \frac{4}{T} \int_0^{T/2} f(t) \sin(k\omega t) dt$   $k \in \mathbb{N}$ 

Consider

$$f(t) = egin{cases} 4t & t \in [0, rac{1}{2}] \ 4 - 4t & t \in [rac{1}{2}, 1] \ 0 & t \in [1, 2] \end{cases}$$

Goal: Fourier series of the 4-periodic **odd** extension of f.

$$T=4$$
  $\omega=rac{2\pi}{T}=rac{\pi}{2}$   $a_k=0$  since odd

Consider

$$f(t) = \begin{cases} 4t & t \in [0, \frac{1}{2}] \\ 4 - 4t & t \in [\frac{1}{2}, 1] \\ 0 & t \in [1, 2] \end{cases}$$

Goal: Fourier series of the 4-periodic **odd** extension of f.

$$T=4$$
  $\omega=rac{2\pi}{T}=rac{\pi}{2}$   $a_k=0$  since odd

$$b_k = \frac{2}{T} \int_0^T f(t) \sin(k\omega t) dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin(k\omega t) dt$$
$$= \frac{4}{T} \int_0^{T/2} f(t) \sin(k\omega t) dt = \int_0^2 f(t) \sin(\frac{k\pi}{2}t) dt$$

Inserting the definition of f and doing integration by parts gives:

$$\begin{split} b_k &= \int_0^2 f(t) \sin(\frac{k\pi}{2}t) dt = \left[ 4t \frac{-\cos(\frac{k\pi}{2}t)}{\frac{k\pi}{2}} \right]_0^{\frac{1}{2}} - \int_0^{\frac{1}{2}} 4\frac{-\cos(\frac{k\pi}{2}t)}{\frac{k\pi}{2}} dt \\ &+ \left[ (4 - 4t) \frac{-\cos(\frac{k\pi}{2}t)}{\frac{k\pi}{2}} \right]_{\frac{1}{2}}^1 - \int_{\frac{1}{2}}^1 (-4) \frac{-\cos(\frac{k\pi}{2}t)}{\frac{k\pi}{2}} dt \\ &= \frac{-8}{k\pi} \left( \frac{1}{2} \cos\left(\frac{k\pi}{4}\right) \right) + \frac{8}{k\pi} \left[ \frac{\sin(\frac{k\pi}{2}t)}{\frac{k\pi}{2}} \right]_0^{\frac{1}{2}} \\ &+ \frac{8}{k\pi} \left( \frac{1}{2} \cos\left(\frac{k\pi}{4}\right) \right) - \frac{8}{k\pi} \left[ \frac{\sin(\frac{k\pi}{2}t)}{\frac{k\pi}{2}} \right]_{\frac{1}{2}}^1 \\ &= \frac{16}{(k\pi)^2} \sin(\frac{k\pi}{4}) - \frac{16}{(k\pi)^2} \left( \sin(\frac{k\pi}{2}) - \sin(\frac{k\pi}{4}) \right) \\ &= \frac{16}{(k\pi)^2} \left( 2\sin(\frac{k\pi}{4}) - \sin(\frac{k\pi}{2}) \right) \end{split}$$

Since f is continuous and piecewise continuous differentiable,

$$f(t) = \sum_{k=1}^{\infty} b_k \sin(\frac{k\pi}{2}t) = \sum_{k=1}^{\infty} \frac{16}{(k\pi)^2} \left( 2\sin(\frac{k\pi}{4}) - \sin(\frac{k\pi}{2}) \right) \sin(\frac{k\pi}{2}t)$$



$$T=4, g(t)=3\sin(\frac{3\pi}{2}t)$$

Then  $\omega = \frac{2\pi}{T} = \frac{\pi}{2}$ , and  $u_k(t) = \cos(k\frac{\pi}{2}t)$ ,  $v_k(t) = \sin(k\frac{\pi}{2}t)$  for  $k \in \mathbb{N}$ . In particular,  $3v_3(t) = g(t)$ . Since  $u_k$  and  $v_k$  are orthonormal, we conclude

$$a_k = \langle g, u_k \rangle = 3 \langle v_3, u_k \rangle = 0$$

for all  $k \in \mathbb{N}_0$  and

$$b_k = \langle g, v_k \rangle = 3 \langle v_3, v_k \rangle = \begin{cases} 0 & \text{if } k \neq 3 \\ 3 & \text{if } k = 3. \end{cases}$$

Thus,  $F_g(t) = g$  for all  $t \in \mathbb{R}$ .

In particular: If g is a linear combination of sin, cos and constant functions, the computation of the Fourier series simplifies as above.

$$y''(x)+\lambda\,y(x)=0$$
  $y(0)=y(L)=0$  with  $\lambda\in\mathbb{R}$  and  $L\in\mathbb{R}^+$   
The trivial solution is  $y(x)=0,\,\forall x\in[0,L].$ 

$$y''(x) + \lambda y(x) = 0$$
  $y(0) = y(L) = 0$  with  $\lambda \in \mathbb{R}$  and  $L \in \mathbb{R}^+$ 

The trivial solution is y(x) = 0,  $\forall x \in [0, L]$ .

#### Non trivial solutions

We want to find out, for which  $\lambda$  there exist non trivial solutions y. In that case,  $\lambda$  is called **eigenvalue** and y **eigenfunction**.

$$y''(x) + \lambda y(x) = 0$$
  $y(0) = y(L) = 0$  with  $\lambda \in \mathbb{R}$  and  $L \in \mathbb{R}^+$ 

The trivial solution is  $y(x) = 0, \forall x \in [0, L]$ .

#### Non trivial solutions

We want to find out, for which  $\lambda$  there exist non trivial solutions y. In that case,  $\lambda$  is called **eigenvalue** and y **eigenfunction**.

#### Strategy for DE of order 2

Compute zeros of characteristic polynomial

$$y''(x) + \lambda \, y(x) \, = \, 0 \quad y(0) \, = \, y(L) \, = 0 \qquad \text{with } \lambda \in \mathbb{R} \text{ and } L \in \mathbb{R}^+$$

The trivial solution is  $y(x) = 0, \forall x \in [0, L]$ .

#### Non trivial solutions

We want to find out, for which  $\lambda$  there exist non trivial solutions y. In that case,  $\lambda$  is called **eigenvalue** and y **eigenfunction**.

#### Strategy for DE of order 2

- ► Compute zeros of characteristic polynomial
- ▶ ℝ-valued solution:
  - If  $\mu_2 = \mu_1 \in \mathbb{R}$ :  $y(x) = c_1 e^{\mu_1 x} + c_2 x e^{\mu_1 x}$

$$y''(x) + \lambda y(x) = 0$$
  $y(0) = y(L) = 0$  with  $\lambda \in \mathbb{R}$  and  $L \in \mathbb{R}^+$ 

The trivial solution is  $y(x) = 0, \forall x \in [0, L]$ .

#### Non trivial solutions

We want to find out, for which  $\lambda$  there exist non trivial solutions y. In that case,  $\lambda$  is called **eigenvalue** and y **eigenfunction**.

#### Strategy for DE of order 2

- ► Compute zeros of characteristic polynomial
- ▶ ℝ-valued solution:
  - If  $\mu_2 = \mu_1 \in \mathbb{R}$ :  $y(x) = c_1 e^{\mu_1 x} + c_2 x e^{\mu_1 x}$
  - If  $\mu_2 \neq \mu_1 \in \mathbb{R} : y(x) = c_1 e^{\mu_1 x} + c_2 e^{\mu_2 x}$

$$y''(x) + \lambda y(x) = 0$$
  $y(0) = y(L) = 0$  with  $\lambda \in \mathbb{R}$  and  $L \in \mathbb{R}^+$ 

The trivial solution is  $y(x) = 0, \forall x \in [0, L]$ .

#### Non trivial solutions

We want to find out, for which  $\lambda$  there exist non trivial solutions y. In that case,  $\lambda$  is called **eigenvalue** and y **eigenfunction**.

#### Strategy for DE of order 2

- Compute zeros of characteristic polynomial
- ▶ ℝ-valued solution:
  - If  $\mu_2 = \mu_1 \in \mathbb{R}$ :  $y(x) = c_1 e^{\mu_1 x} + c_2 x e^{\mu_1 x}$
  - If  $\mu_2 \neq \mu_1 \in \mathbb{R} : y(x) = c_1 e^{\mu_1 x} + c_2 e^{\mu_2 x}$
  - $\blacktriangleright \text{ If } \mu_2 = \overline{\mu_1} \notin \mathbb{R} : y(x) = c_1 \text{Re}\left(e^{\mu_1 x}\right) + c_2 \text{Im}\left(e^{\mu_1 x}\right)$

$$y''(x) + \lambda y(x) = 0$$
  $y(0) = y(L) = 0$  with  $\lambda \in \mathbb{R}$  and  $L \in \mathbb{R}^+$ 

The trivial solution is  $y(x) = 0, \forall x \in [0, L]$ .

#### Non trivial solutions

We want to find out, for which  $\lambda$  there exist non trivial solutions y. In that case,  $\lambda$  is called **eigenvalue** and y **eigenfunction**.

### Strategy for DE of order 2

- ► Compute zeros of characteristic polynomial
- ▶ ℝ-valued solution:
  - If  $\mu_2 = \mu_1 \in \mathbb{R}$ :  $y(x) = c_1 e^{\mu_1 x} + c_2 x e^{\mu_1 x}$
  - If  $\mu_2 \neq \mu_1 \in \mathbb{R} : y(x) = c_1 e^{\mu_1 x} + c_2 e^{\mu_2 x}$
  - If  $\mu_2 = \overline{\mu_1} \notin \mathbb{R} : y(x) = c_1 \text{Re}(e^{\mu_1 x}) + c_2 \text{Im}(e^{\mu_1 x})$

For exercise sheet: Use boundary values for computation of  $c_1, c_2$ .

#### Definition

Let  $f: D \to \mathbb{R}$ ,  $D \subseteq \mathbb{R}^n$ , then the **nabla operator** or **gradient** of f is defined as

$$\nabla f(x) = \nabla f \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} f_{x_1}(x_1, x_2, \dots, x_n) \\ f_{x_2}(x_1, x_2, \dots, x_n) \\ \vdots \\ f_{x_n}(x_1, x_2, \dots, x_n) \end{pmatrix} = \mathbf{grad} f(x_1, x_2, \dots, x_n)^T$$

if it exists. The **Laplace operator**  $\Delta$  is defined as

$$\Delta f(x) = \Delta f(x_1, \ldots, x_n) = \sum_{k=1}^n f_{x_k x_k}(x_1, \ldots, x_n)$$

if it exists.

#### Definition

Let  $v:D\to\mathbb{R}^n$ ,  $D\subseteq\mathbb{R}^n$  be a vector field, then the **divergence** of v is defined as

$$v: \operatorname{div} v(x) = \operatorname{div} v(x_1, \dots, x_n) = \sum_{k=1}^n \frac{\partial v_k}{\partial x_k} (x_1, \dots, x_n)$$

if it exists.

#### Definition

Let  $v:D\to\mathbb{R}^n$ ,  $D\subseteq\mathbb{R}^n$  be a vector field, then the **divergence** of v is defined as

$$v: \operatorname{div} v(x) = \operatorname{div} v(x_1, \dots, x_n) = \sum_{k=1}^n \frac{\partial v_k}{\partial x_k} (x_1, \dots, x_n)$$

if it exists.

### Example

If 
$$n = 3$$
, then  $v \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} v_1(x, y, z) \\ v_2(x, y, z) \\ v_3(x, y, z) \end{pmatrix}$ ,

$$\operatorname{div} v(x, y, z) = \frac{\partial v_1}{\partial x}(x, y, z) + \frac{\partial v_2}{\partial y}(x, y, z) + \frac{\partial v_3}{\partial z}(x, y, z)$$

Interpretation: Volume density of the outward flux (Quelldichte)

#### Definition

Let  $v:D\to\mathbb{R}^3$ ,  $D\subseteq\mathbb{R}^3$  be a vector field, then the **rotation** of v is defined as

$$\mathbf{rot}\,v(x,y,z) = \begin{pmatrix} \frac{\partial v_3}{\partial y}(x,\,y,\,z) - \frac{\partial v_2}{\partial z}(x,\,y,\,z) \\ \frac{\partial v_1}{\partial z}(x,\,y,\,z) - \frac{\partial v_3}{\partial x}(x,\,y,\,z) \\ \frac{\partial v_2}{\partial x}(x,\,y,\,z) - \frac{\partial v_1}{\partial y}(x,\,y,\,z) \end{pmatrix}$$

if it exists.

If we consider plane currents, we can rewrite this in  $\mathbb{R}^3$ 

$$v \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} v_1(x, y) \\ v_2(x, y) \end{pmatrix} \longleftrightarrow \tilde{v} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} v_1(x, y) \\ v_2(x, y) \\ 0 \end{pmatrix}$$

For  $\tilde{v}$  we obtain the rotation:  $(0, 0, \frac{\partial v_2}{\partial x}(x, y) - \frac{\partial v_1}{\partial y}(x, y))^T$ . Therefore, we abbreviate n = 2:

$$rot v(x,y) = \frac{\partial v_2}{\partial x}(x,y) - \frac{\partial v_1}{\partial y}(x,y)$$

### Differential Operators: Example 1

Let 
$$v(x,y) = \begin{pmatrix} u(x,y) \\ v(x,y) \end{pmatrix} = \begin{pmatrix} \frac{y}{2} \\ -2x \end{pmatrix}$$
,  $(x,y) \neq (0,0)$  represent the velocity of a plane current. Then

$$\operatorname{div}(v) = 0 \qquad \qquad \operatorname{rot}(v) = -\frac{5}{2}$$

## Differential Operators: Example 1

Let 
$$v(x,y) = \begin{pmatrix} u(x,y) \\ v(x,y) \end{pmatrix} = \begin{pmatrix} \frac{y}{2} \\ -2x \end{pmatrix}$$
,  $(x,y) \neq (0,0)$  represent the velocity of a plane current. Then

$$\operatorname{div}(v) = 0 \qquad \operatorname{rot}(v) = -\frac{5}{2}$$

Figure: Example of a vector field with zero divergence (no source/sink behaviour of the flux at any point)

# Differential Operators: Example 2 (Combination of operators)

Let  $f: D \longrightarrow \mathbb{R}$ ,  $D \subset \mathbb{R}^3$  be a  $\mathbb{C}^3$ -function and  $v = \nabla f$ .

$$\operatorname{div} v(x) = \operatorname{div} \nabla f(x) = \Delta f(x)$$

is well defined and it admits values in  $\mathbb{R}$ .

$$\nabla \operatorname{div} f(x)$$

is undefined since the divergence is only defined for functions from  $\mathbb{R}^n$  to  $\mathbb{R}^n$ .

$$\nabla \operatorname{div} v(x)$$

is well-defined and it is a vector in  $\mathbb{R}^3$  at every point in D.

$$\nabla \operatorname{rot} f(x)$$

is undefined since the rotation is only defined for functions from  $\mathbb{R}^3$  to  $\mathbb{R}^3$ .