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General Information for Differential Equations II*

» Lecturer: Professor Thomas Schmidt
» Lectures: Mo, 13:15-14:45, A-0.13

» Tutor (English): Jule Schitt
» e-mail: jule.schuett@uni-hamburg.de

» office hour: Mo 10:00-11:00, E4.012

» Auditorium Exercise class: Fr 11:30-13:00, A-1.15
» Exercise groups: Mo 11:30-13:00, A-1.20

» More information and material: math.uni-hamburg.de/teaching

*Everything bi-weekly except lectures


https://www.math.uni-hamburg.de/teaching/export/tuhh/cm/d2/24/lm.html.de

Fourier Analysis

Idea
Having a T-periodic function f (like sin or cos for T = 27), then

we hope to represent f as uniform convergent series with
summands we know well (sin and cos)



Fourier Analysis

Idea
Having a T-periodic function f (like sin or cos for T = 27), then

we hope to represent f as uniform convergent series with
summands we know well (sin and cos)

(Hopefully) known tools we need:
» Vector space V
» Scalar product (-, -)
» Orthonormal basis by, by, ... ((bj, bj) = 6i;)



Fourier Analysis

» Here: V is the vector space of all continuous T-periodic
functions
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Fourier Analysis

» Here: V is the vector space of all continuous T-periodic
functions

» Scalar product:

;
(f.g) = i/o f(t)g(t)dt.

» Orthonormal basis:

uk(x) := cos(kwt), vi(t) := sin(kwt),

up(t) == 7

27
ithkeN,w=—.
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Fourier Analysis

Indeed, by integration by parts and trigonomic identifications,

T

falls k # |

3/ sin(kwt) - sin(lwt)de — 40 IS kAL g N
T Jo 1 falls k = 1.
2 /T cos(kwt) - cos(lwt)dt 0 falls k71, Vk,l €N
—_ w . w = s
T Jo 1 falls k= 1.
2 T
7/ cos(kwt) - sin(lwt))dt = 0 Vk,I €N,

0
2/T 1 cos(kwt)d / sin(kwt)dt =0 Vk € N
— — w w ,
TJ V2° V2

dt=1.
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Fourier Analysis

For instance,

2sin(at)sin(fBt) = cos((a — B)t) — cos((cx + B)t).



Fourier Analysis

For instance,
2sin(at)sin(fBt) = cos((a — B)t) — cos((cx + B)t).
So, if k,leN, k#£1

T
/ 2sin(kwt) - sin(lwt)dt
0

- /T cos( (ke — l)t) — cos((ke + fw)t) dt
0

B [sin((kw — lw)t)  sin((kw + ko)) ]"
B wlk —1) wlk+1) 0
:sin((k —NwT) sin((k+/wT)
wlk=1) w(k+1)
:sin((k— N2w)  —sin((k + 1)27)
wlk=1) wlk+1)

=0



Fourier Analysis

For instance,
2sin(at)sin(ft) = cos((a — B)t) — cos((a + B)t).
and if k=1

T
2sin(kwt) - sin(kwt)dt

cos((kw — kw)t) — cos((kw + kw)t) dt

ﬁo\

T - T
_ ldr — [sm((2kwt)]

0 2k |,
_T_ sin(4km) _T




Fourier Analysis

Definition
Let f : R — C be piecewise differentiable and T-periodic, then the
Fourier Series of f is defined as

2

+ Zak cos(kwt) + by sin(kwt) w=—,

Fe(t) =
k=1 T

?

where we callf

a = — / ) cos(kwt) dt ke (f, ug) k € No
2 .
b = (f,v) = - / f(t)sin(kwt) dt keN
0

the Fourier coefficients of f.

TThe last equality is only valid for k # 0 since ag/2 = /2(f, up) i.e., we inserted the constant function 1
instead of 1/+/2 in the inner product on the right hand side. One can actually also define ag = (f, up) but then
take a/+/2 instead of ap/2 in the definition of Ff(t).



Fourier Analysis

Convergence

In general ,the series converges to 3(f_(t) + f;(t)) which we
denote by F¢(t) ~ f(t).
Hence, if f is continuous at t, then F¢(t) = f(t).



Fourier Analysis: Simplification due to Geometry

If fis even (f(—t) = f(t)) then

N~

2 [T 2
bo=2 / F(£)sin(kwt) dt = =
0 \——————\,—————/ 7_

odd

/ f(t)sin(kwt)dt = 0

Nl

and

2 % 4 T/2
a= o / F(£) cos(kwt) dt = — / £(£) cos(kwt) dt
_%M—/ T 0

even

If fis odd (f(—t) = — f(t)) then

4 (T2
ag =0 und by = 7 / f(t)sin(kwt) dt keN
0



Fourier Analysis: Example 1

Consider
4t t€[0,3]
f(t)=(4—4t te(3,1]
0 te[l,2]

Goal: Fourier series of the 4-periodic odd extension of f.

_2m_

T=4 w T g a, = 0 since odd



Fourier Analysis: Example 1

Consider
4t t€[0,3]
f(t) =< 4— 4t te (i 1]
0 te[l,2]

Goal: Fourier series of the 4-periodic odd extension of f.

2

T =14 WZTZg ay = 0 since odd

T T/2
/ f(t)sin(kwt)dt = — / ) sin(kwt) dt
0 T/2

/T )sin(kwt) dt = /0 f(t)sin(%t)dt

0

~|\4> ~HI\>



Fourier Analysis: Example 1

Inserting the definition of f and doing integration by parts gives:

2 ~cos (k1) LR kmy
bk:/ f(t)sin(k—;t)dt: l4tc<)sk7(r2)] —/ 4%&
0 2 0 2

0 2

1 1 kT
- Tt

_ / (_4)$dt

N —cos(";t)]

(4 — 4t) =

T (km)2 TN 4 (km)?
16 km km
= (k)2 <25|n(4) - sm(2)>



Fourier Analysis: Example 1

Since f is continuous and piecewise continuous differentiable,




Fourier Analysis: Example 2

T =4, g(t) = 3sin(3t)

Then w =2 = 7, and uy(t) = cos(k3t), vk(t) = sin(k%t) for
k € N. In particular, 3vs(t) = g(t). Smce ui and vy are
orthonormal, we conclude

ak = (g, uk) = 3{v3,ux) =0
for all k € Ny and

0 ifk+#3

sz :3, =
k= {govi) = 3(ua, vi) {3 if k =3

Thus, Fg(t) = g for all t € R.
In particular: If g is a linear combination of sin, cos and constant
functions, the computation of the Fourier series simplifies as above.



Eigenvalue Strategies: Reminder & Example:
Parameter depending boundary value problem

y'(x)+Ay(x) =0 y(0) = y(L) =0 with A € R and L € R

The trivial solution is y(x) = 0, Vx € [0, L].



Eigenvalue Strategies: Reminder & Example:
Parameter depending boundary value problem

y'(x)+Ay(x) =0 y(0) = y(L) =0 with A € R and L € R

The trivial solution is y(x) = 0, Vx € [0, L].

Non trivial solutions
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Eigenvalue Strategies: Reminder & Example:
Parameter depending boundary value problem

y'(x)+Ay(x) =0 y(0) = y(L) =0 with A € R and L € R

The trivial solution is y(x) = 0, Vx € [0, L].

Non trivial solutions
We want to find out, for which X there exist non trivial solutions y.
In that case, A is called eigenvalue and y eigenfunction.

Strategy for DE of order 2

» Compute zeros of characteristic polynomial
» R-valued solution:
> If up = p1 € R: y(x) = cre!™ + coxetr™
> If up # p1 € R y(x) = cret™ + et



Eigenvalue Strategies: Reminder & Example:
Parameter depending boundary value problem

y'(x)+Ay(x) =0 y(0) = y(L) =0 with A € R and L € R

The trivial solution is y(x) = 0, Vx € [0, L].

Non trivial solutions
We want to find out, for which X there exist non trivial solutions y.
In that case, A is called eigenvalue and y eigenfunction.

Strategy for DE of order 2

» Compute zeros of characteristic polynomial
» R-valued solution:
> If up = p1 € R: y(x) = cre!™ + coxetr™
> If o # 1 € R y(x) = cre! + el
> If po =71 ¢ R: y(x) = ciRe (e"™) 4 coIm (e#1%)



Eigenvalue Strategies: Reminder & Example:
Parameter depending boundary value problem

y'(x)+Ay(x) =0 y(0) = y(L) =0 with A € R and L € R

The trivial solution is y(x) = 0, Vx € [0, L].
Non trivial solutions

We want to find out, for which X there exist non trivial solutions y.
In that case, A is called eigenvalue and y eigenfunction.

Strategy for DE of order 2

» Compute zeros of characteristic polynomial
» R-valued solution:
> If up = p1 € R: y(x) = cre!™ + coxetr™
> If o # 1 € R y(x) = cre! + el
> If po =71 ¢ R: y(x) = ciRe (e"™) 4 coIm (e#1%)

For exercise sheet: Use boundary values for computation of c¢y,cp.



Differential Operators

Definition
Let f: D — R, D CR”", then the nabla operator or gradient of
f is defined as

X]. fxl(le X2) cecy Xn)
X2 ﬂ(X7X27"'aXn

Vf(X)ZVf ) — 2( 1 . ) :gradf(X]_, X2y oy Xn)T
Xn fry (X1, X2y .+ oy Xn)

if it exists. The Laplace operator A is defined as

n

Af(x) = Af(x1, .. x0) = D o (X1, Xn)
k=1

if it exists.



Differential Operators

Definition
Let v: D — R", D C R” be a vector field, then the divergence of

v is defined as
. 8vk

v:divv(x) =divv(xg, - ,xp) = — (X1, Xn
(00 = divvton, o) = 30 G )

if it exists.



Differential Operators

Definition
Let v: D — R", D C R” be a vector field, then the divergence of
v is defined as

n
0
v divv(x) =divv(xy, -, xp) = 87‘/"()(17...7)(”)
k=1 Pk

if it exists.
Example

X Vl(X) Y, Z)
lfn=3,thenv |y ]| = [ v(x, y, 2)

z V3(X’ Y, Z)

) ov ov Ov
dIVV(vavz) = 87):()(7 Y, Z) + 87)/2()(7 Y, Z) + 8723()(’ Y, Z)

Interpretation : Volume density of the outward flux (Quelldichte)



Differential Operators

Definition

Let v: D — R3, D C R3 be a vector field, then the rotation of v
is defined as

8V3 8V2

aiy(xa Y, Z) - E()Q Y, Z)

v ov
rotv(x,y,z) = 8721()(’ y,z) — a—;(x, Y, 2)

ovy ov

g(xv Y, Z) - E(X’ Ys Z)

if it exists.



Differential Operators

If we consider plane currents, we can rewrite this in R3
x vi(x, y)
X VI(X’ y)) ~
v = — Vv = | wo(x,
<y> <V2(X, y) Y ()
8V2 8v1 T

Therefore, we abbreviate n = 2:

ov, ov
rotv(x,y) = 520 y) = 5% )



Differential Operators: Example 1

Yy
Let v(x,y) = <5g:§;) = (_22X> ) (x,y) # (0,0) represent the

velocity of a plane current. Then

div(v) =0 rot(v) = —g



Differential Operators: Example 1

y
u(x, y) 5
Let v(x,y) = ’ = 2 1, X, 0,0) represent the
e = (47) <_2X> (x.) £ (0,0) rep
velocity of a plane current. Then
5
div(v) =0 rot(v) = —5
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Figure: Example of a vector field with zero divergence (no source/sink
behaviour of the flux at any point)



Differential Operators: Example 2
(Combination of operators)

Let f: D — R, D C R3 be a C3-function and v = V.

divv(x) = divVf(x) = Af(x)

is well defined and it admits values in R.

V div f(x)
is undefined since the divergence is only defined for functions from
R" to R".

V div v(x)

is well-defined and it is a vector in R3 at every point in D.

Vrotf(x)

is undefined since the rotation is only defined for functions from R3
to R3.
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